Please use this identifier to cite or link to this item: http://dspace.iitrpr.ac.in:8080/xmlui/handle/123456789/2818
Title: Smart viscoelastic and self-healing characteristics of graphene nano-gels
Authors: Dhar, P.
Katiyar, A.
Maganti, L. S.
Issue Date: 29-Sep-2021
Abstract: Readily synthesizable nano-graphene and poly ethylene glycol based stable gels have been synthesized employing an easy refluxing method, and exhaustive rheological and viscoelastic characterizations have been performed to understand the nature of such complex gel systems. The gels exhibit shear thinning response with pronounced yield stress values which is indicative of a microstructure, where the graphene nanoflakes intercalate (possible due to the refluxing) with the polymer chains and form a pseudo spring damper network. Experimentations on the thixotropic behavior of the gels indicate that the presence of the G nanoflakes leads to immensely augmented structural stability capable of withstanding severe impact shears. Further information about the localized interactions of the G nanoflakes with the polymer chains is revealed from the amplitude and frequency sweep analyses in both linear and non-linear viscoelastic regimes. Massively enhanced cross over amplitude values are recorded and several smart effects such as enhanced elastic behavior at increasing forcing frequencies are registered. Structural resonance induced disruption of the elastic behavior is observed for the gels for a given range of frequency and the proposition of resonance has been justified mathematically. It is observed that, post this resonance bandwidth, the gels are able to self-heal and regain their original elastic behavior back without any external intervention. More detailed information on the viscoelastic nature of the gels has been obtained from creep and recovery compliance tests and justifications for the spring damper microstructure has been obtained. Smart features such as enhanced stress relaxation behavior with increasing strain have been observed and the same explained, based on the proposed microstructure. The viscoelastic response of the gels has been mathematically modeled and it has been revealed that such complex gels can be accommodated as modified Burger’s viscoelastic systems with predominant elastic/plastic behavior. The present gels show promise in microscale actuators, vibration isolation, and damping in devices and prosthetics, as active fluids in automotive suspensions, controlled motion arrestors, and so on.
URI: http://localhost:8080/xmlui/handle/123456789/2818
Appears in Collections:Year-2016

Files in This Item:
File Description SizeFormat 
Full Text.pdf2.95 MBAdobe PDFView/Open    Request a copy


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.