Please use this identifier to cite or link to this item: http://dspace.iitrpr.ac.in:8080/xmlui/handle/123456789/3046
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMohammadi, S. S.-
dc.contributor.authorBrennan, M.-
dc.contributor.authorOberoi, A.-
dc.contributor.authorVagh, H.-
dc.contributor.authorSpencer, M.-
dc.contributor.authorKumar, T. J. D.-
dc.contributor.authorAndrews, J.-
dc.date.accessioned2021-10-14T23:55:48Z-
dc.date.available2021-10-14T23:55:48Z-
dc.date.issued2021-10-15-
dc.identifier.urihttp://localhost:8080/xmlui/handle/123456789/3046-
dc.description.abstractThis study aims at generating fundamental knowledge of the interaction of hydrated protons (hydronium) with layered graphene materials. The adsorption mechanism is determined utilising Density Functional Theory (DFT) and ab initio Molecular Dynamics (MD) simulations. The initial results show dissociation of the hydronium ion to produce a proton bound to the graphene without significant structural change at 300 K. The remaining water molecule stays attracted to the chemisorbed hydrogen atom. Further simulations are required to determine the full hydrogen storage capacity of this system.en_US
dc.language.isoen_USen_US
dc.subjecthydrogen storageen_US
dc.subjectgrapheneen_US
dc.subjecthydroniumen_US
dc.subjectproton flow batteryen_US
dc.subjectDFTen_US
dc.subjectab initio MDen_US
dc.titleDensity functional theory and ab initio molecular dynamics investigation of hydronium interactions with grapheneen_US
dc.typeArticleen_US
Appears in Collections:Year-2017

Files in This Item:
File Description SizeFormat 
Full Text.pdf450.85 kBAdobe PDFView/Open    Request a copy


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.