Please use this identifier to cite or link to this item: http://dspace.iitrpr.ac.in:8080/xmlui/handle/123456789/3056
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKaur, K.-
dc.contributor.authorKhan, M.-
dc.contributor.authorChatterjee, T.-
dc.date.accessioned2021-10-16T09:03:22Z-
dc.date.available2021-10-16T09:03:22Z-
dc.date.issued2021-10-16-
dc.identifier.urihttp://localhost:8080/xmlui/handle/123456789/3056-
dc.description.abstractIn this paper, we study the normal complement problem on semisimple group algebras and modular group algebras FG over a field F of positive characteristic. We provide an infinite class of abelian groups G and Galois fields F that have normal complement in the unit group U(FG) for semisimple group algebras FG. For metacyclic group G of order p1p2, where p1, p2 are distinct primes, we prove that G does not have normal complement in U(FG) for finite semisimple group algebra FG. Finally, we study the normal complement problem for modular group algebras over field of characteristic 2.en_US
dc.language.isoen_USen_US
dc.subjectGroup algebraen_US
dc.subjectsemisimpleen_US
dc.subjectnormal complementen_US
dc.subjectunitary unitsen_US
dc.subjectunit groupen_US
dc.subjectbicyclic unitsen_US
dc.titleA note on normal complement problemen_US
dc.typeArticleen_US
Appears in Collections:Year-2017

Files in This Item:
File Description SizeFormat 
Full Text.pdf203.8 kBAdobe PDFView/Open    Request a copy


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.