Please use this identifier to cite or link to this item: http://dspace.iitrpr.ac.in:8080/xmlui/handle/123456789/3075
Full metadata record
DC FieldValueLanguage
dc.contributor.authorLau, R.-
dc.contributor.authorBeard, M.-
dc.contributor.authorGupta, S. S.-
dc.contributor.authorSchatz, H.-
dc.contributor.authorAfanasjev, A. V.-
dc.contributor.authorBrown, E. F.-
dc.contributor.authorDeibel, A.-
dc.contributor.authorGasques, L. R.-
dc.contributor.authorHitt, G. W.-
dc.contributor.authorHix, W. R.-
dc.contributor.authorKeek, L.-
dc.contributor.authorMöller, P.-
dc.contributor.authorShternin, P. S.-
dc.contributor.authorSteiner, A. W.-
dc.contributor.authorWiescher, M.-
dc.contributor.authorXu, Y.-
dc.date.accessioned2021-10-19T04:56:20Z-
dc.date.available2021-10-19T04:56:20Z-
dc.date.issued2021-10-19-
dc.identifier.urihttp://localhost:8080/xmlui/handle/123456789/3075-
dc.description.abstractX-ray observations of transiently accreting neutron stars during quiescence provide information about the structure of neutron star crusts and the properties of dense matter. Interpretation of the observational data requires an understanding of the nuclear reactions that heat and cool the crust during accretion and define its nonequilibrium composition. We identify here in detail the typical nuclear reaction sequences down to a depth in the inner crust where the mass density is r = ´ - 2 10 g cm 12 3 using a full nuclear reaction network for a range of initial compositions. The reaction sequences differ substantially from previous work. We find a robust reduction of crust impurity at the transition to the inner crust regardless of initial composition, though shell effects can delay the formation of a pure crust somewhat to densities beyond r = ´ - 2 10 g cm 12 3. This naturally explains the small inner crust impurity inferred from observations of a broad range of systems. The exception are initial compositions with A 102 nuclei, where the inner crust remains impure with an impurity parameter of Qimp ≈ 20 owing to the N = 82 shell closure. In agreement with previous work, we find that nuclear heating is relatively robust and independent of initial composition, while cooling via nuclear Urca cycles in the outer crust depends strongly on initial composition. This work forms a basis for future studies of the sensitivity of crust models to nuclear physics and provides profiles of composition for realistic crust modelsen_US
dc.language.isoen_USen_US
dc.subjectdense matter – nuclear reactionsen_US
dc.subjectnucleosynthesisen_US
dc.subjectabundances – starsen_US
dc.subjectneutron – X-raysen_US
dc.subjectbinariesen_US
dc.titleNuclear reactions in the crusts of accreting neutron starsen_US
dc.typeArticleen_US
Appears in Collections:Year-2018

Files in This Item:
File Description SizeFormat 
Full Text.pdf1.98 MBAdobe PDFView/Open    Request a copy


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.