Please use this identifier to cite or link to this item: http://dspace.iitrpr.ac.in:8080/xmlui/handle/123456789/3281
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSingh, S.-
dc.contributor.authorTiwari, R. K.-
dc.contributor.authorSood, V.-
dc.contributor.authorGusain, H. S.-
dc.contributor.authorPrashar, S.-
dc.date.accessioned2021-11-30T21:35:15Z-
dc.date.available2021-11-30T21:35:15Z-
dc.date.issued2021-12-01-
dc.identifier.urihttp://localhost:8080/xmlui/handle/123456789/3281-
dc.description.abstractImage-based fusion is a state-of-art process to extract vital information by combining the two or more images acquired from different satellite sensors. Recently launched (26th September 2016) ISRO's (Indian Space Research Organization) Ku-band (13.5 GHz) based Scatterometer Satellite (SCATSAT-1) as an active microwave sensor can offer the day-night, all-weather monitoring services, which are not possible with the optical-based visible and infrared remote sensing satellites. Therefore, the fusion of optical and microwave data offers the cloud-free detection of earth surface transitions and helps in emergency response to natural hazards, security, and defence. The objectives of the proposed framework are (a) nearest-neighbour based fusion (NNF) of ISRO's SCATSAT-1 and NASA's (National Aeronautics and Space Administration) moderate resolution imaging spectroradiometer (MODIS) optical data, (b) generation of thematic maps using artificial neural network (ANN) based classification of the fused data, (c) detection of spatiotemporal variations via post-classification comparison (PCC) based change detection, (d) cross-referencing with well-defined fusion methods, i.e. Gram-Schmidt (GS), Brovey Transformation (BT) and Ehlers, and (e) Impact analysis of clouds on the input dataset and fusion methods. This study has been conducted over the Western Himalayas to estimate the snow cover changes under cloudy conditions with two datasets i.e., winter and monsoon. The experimental outcomes confirm the efficacy of the proposed framework in the effective removal of clouds, generation of classified maps, and change maps. The present study includes an exhaustive list of applicative situations for cloud-free monitoring using freely and daily based SCATSAT-1 and MODIS datasets. Index Terms— Scatterometer Satellite (SCATSAT-1); Moderate Resolution Imaging Spectroradiometer (MODIS); Nearest-Neighbor based Fusion (NNF); Artificial Neural Network (ANN); Post Classification Comparison (PCC).en_US
dc.language.isoen_USen_US
dc.titleImage-Fusion of Ku-band based SCATSAT-1 and MODIS data for Cloud-free change detection over western himalayasen_US
dc.typeArticleen_US
Appears in Collections:Year-2021

Files in This Item:
File Description SizeFormat 
Full Text.pdf1.91 MBAdobe PDFView/Open    Request a copy


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.