Please use this identifier to cite or link to this item: http://dspace.iitrpr.ac.in:8080/xmlui/handle/123456789/3292
Full metadata record
DC FieldValueLanguage
dc.contributor.authorHambarde, P.-
dc.contributor.authorMurala, S.-
dc.contributor.authorDhall, A.-
dc.date.accessioned2021-12-06T05:43:59Z-
dc.date.available2021-12-06T05:43:59Z-
dc.date.issued2021-12-06-
dc.identifier.urihttp://localhost:8080/xmlui/handle/123456789/3292-
dc.description.abstractDue to the unavailability of large-scale underwater depth image datasets and ill-posed problems, underwater single-image depth prediction is a challenging task. An unambiguous depth prediction for single underwater image is an essential part of applications like underwater robotics, marine engineering, and so on. This article presents an endto-end underwater generative adversarial network (UW-GAN) for depth estimation from an underwater single image. Initially, a coarse-level depth map is estimated using the underwater coarse-level generative network (UWC-Net). Then, a fine-level depth map is computed using the underwater fine-level network (UWF-Net) which takes input as the concatenation of the estimated coarse-level depth map and the input image. The proposed UWF-Net composes of spatial and channel-wise squeeze and excitation block for fine-level depth estimation. Also, we propose a synthetic underwater image generation approach for largescale database. The proposed network is tested on real-world and synthetic underwater datasets for its performance analysis. We also perform a complete evaluation of the proposed UW-GAN on underwater images having different color domination, contrast, and lighting conditions. Presented UW-GAN framework is also investigated for underwater single-image enhancement. Extensive result analysis proves the superiority of proposed UW-GAN over the state-of-the-art (SoTA) hand-crafted, and learning-based approaches for underwater single-image depth estimation (USIDE) and enhancement.en_US
dc.language.isoen_USen_US
dc.subjectAdversarial learningen_US
dc.subjectcoarse-level depthen_US
dc.subjectfinelevel depthen_US
dc.subjectimage enhancementen_US
dc.subjectunderwater depth estimationen_US
dc.titleUW-GAN: single image depth estimation and image enhancement for underwater imagesen_US
dc.typeArticleen_US
Appears in Collections:Year-2021

Files in This Item:
File Description SizeFormat 
Full Text.pdf8.39 MBAdobe PDFView/Open    Request a copy


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.