Please use this identifier to cite or link to this item: http://dspace.iitrpr.ac.in:8080/xmlui/handle/123456789/3365
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMadireddy, R. R.-
dc.contributor.authorMudgal, A.-
dc.date.accessioned2022-04-23T10:00:54Z-
dc.date.available2022-04-23T10:00:54Z-
dc.date.issued2022-04-23-
dc.identifier.urihttp://localhost:8080/xmlui/handle/123456789/3365-
dc.description.abstractIn this article, we study the gradation of the complexity of the weighted set cover problem with axis-parallel rectangles whose side lengths are bounded integers. We show that the mod-one method of Chan and Hu (2015) for unit squares can be extended to these objects to get a polynomial-time approximation scheme (PTAS). We further show that the problem has a polynomial-time algorithm when all rectangles intersect a given horizontal line. On the contrary, we show that even the unweighted version of the problem is NP-hard when every rectangle intersects at least one of two given horizontal lines at the unit vertical distance.en_US
dc.language.isoen_USen_US
dc.subjectAxis-parallel rectanglesen_US
dc.subjectBounded integer side lengthsen_US
dc.subjectGeometric set coveren_US
dc.subjectNP-hardnessen_US
dc.subjectPTASen_US
dc.subjectSweep-line methoden_US
dc.titleWeighted geometric set cover with rectangles of bounded integer side lengthsen_US
dc.typeArticleen_US
Appears in Collections:Year-2022

Files in This Item:
File Description SizeFormat 
Full Text.pdf760.56 kBAdobe PDFView/Open    Request a copy


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.