Please use this identifier to cite or link to this item: http://dspace.iitrpr.ac.in:8080/xmlui/handle/123456789/3392
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBhat, M.A.-
dc.contributor.authorKosuru, G.S.R.-
dc.date.accessioned2022-05-03T19:39:36Z-
dc.date.available2022-05-03T19:39:36Z-
dc.date.issued2022-05-04-
dc.identifier.urihttp://localhost:8080/xmlui/handle/123456789/3392-
dc.description.abstractFor a real-valued measurable function f and a nonnegative, nondecreasing function φ, we first obtain a Chebyshev type inequality which provides an upper bound for φ(λ1)μ({x ∈ Ω : f (x) ≥ λ1}) + n ∑ k=2 (φ(λk) − φ(λk−1)) μ({x ∈ Ω : f (x) ≥ λk}), where 0 < λ1 < λ2 < · · · < λn < ∞. Using this, generalizations of a few concentration inequalities such as Markov, reverse Markov, Bienaymé–Chebyshev, Cantelli and Hoeffding inequalities are obtained.en_US
dc.language.isoen_USen_US
dc.subjectMarkov’s inequalityen_US
dc.subjectChebyshev’s inequalityen_US
dc.subjectCantelli’s inequalityen_US
dc.subjectHoeffding’s inequalityen_US
dc.titleStatistics and Probability Lettersen_US
dc.typeArticleen_US
Appears in Collections:Year-2022

Files in This Item:
File Description SizeFormat 
Full Text.pdf374.21 kBAdobe PDFView/Open    Request a copy


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.