Please use this identifier to cite or link to this item:
http://dspace.iitrpr.ac.in:8080/xmlui/handle/123456789/3450
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Digar, A. | - |
dc.contributor.author | Garcla, R.E. | - |
dc.contributor.author | Kosuru, G.S.R. | - |
dc.date.accessioned | 2022-05-31T00:09:04Z | - |
dc.date.available | 2022-05-31T00:09:04Z | - |
dc.date.issued | 2022-05-31 | - |
dc.identifier.uri | http://localhost:8080/xmlui/handle/123456789/3450 | - |
dc.description.abstract | The aim of this paper is to address an open problem given in [Kirk et al. in J Math Anal Appl 463:461–476, (2018)]. We give a characterization of weak proximal normal structure using best proximity pair property. We also introduce a notion of pointwise cyclic contraction wrt orbits and therein prove the existence of a best proximity pair in the setting of reflexive Banach spaces. | en_US |
dc.language.iso | en_US | en_US |
dc.subject | Best proximity pairs | en_US |
dc.subject | Proximal normal structure | en_US |
dc.subject | Relatively nonexpansive mapping | en_US |
dc.subject | Relatively orbital nonexpansive | en_US |
dc.title | A characterization of weak proximal normal structure and best proximity pairs | en_US |
dc.type | Article | en_US |
Appears in Collections: | Year-2022 |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Full Text.pdf | 233.77 kB | Adobe PDF | View/Open Request a copy |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.