Please use this identifier to cite or link to this item: http://dspace.iitrpr.ac.in:8080/xmlui/handle/123456789/3585
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSetia, H.-
dc.contributor.authorKhan, M.-
dc.date.accessioned2022-06-25T11:30:33Z-
dc.date.available2022-06-25T11:30:33Z-
dc.date.issued2022-06-25-
dc.identifier.urihttp://localhost:8080/xmlui/handle/123456789/3585-
dc.description.abstractLet Sn be the symmetric group and An be the alternating group on n symbols. In this article, we have proved that if F is a finite field of characteristic p > n, then there does not exist a normal complement of Sn (n is even) and An (Formula presented.) in their corresponding unit groups (Formula presented.) and (Formula presented.) Moreover, if F is a finite field of characteristic 3, then A 4 does not have normal complement in the unit group (Formula presented.)en_US
dc.language.isoen_USen_US
dc.subjectalternating groupen_US
dc.subjectfinite fielden_US
dc.subjectGroup ringen_US
dc.subjectsomorphismen_US
dc.subjectkronecker producten_US
dc.subjectnormal complementen_US
dc.subjectrepresentationen_US
dc.subjectunit groupen_US
dc.titleThe normal complement problem in group algebrasen_US
dc.typeArticleen_US
Appears in Collections:Year-2022

Files in This Item:
File Description SizeFormat 
Full Text.pdf785.19 kBAdobe PDFView/Open    Request a copy


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.