Please use this identifier to cite or link to this item: http://dspace.iitrpr.ac.in:8080/xmlui/handle/123456789/3671
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKaliraj, A.S.-
dc.date.accessioned2022-07-17T10:01:23Z-
dc.date.available2022-07-17T10:01:23Z-
dc.date.issued2022-07-17-
dc.identifier.urihttp://localhost:8080/xmlui/handle/123456789/3671-
dc.description.abstractIn this article, we study the geometric properties of Vn(f), the nth De la Vallée Poussin means for univalent starlike harmonic mappings f. In particular, we provide a necessary and sufficient condition for Vn(f) to be univalent and starlike in the unit disk D, when f∈S∗H, the class of all normalized univalent starlike harmonic mappings in D. We determine the radius of fully starlikeness (respectively, fully convexity) of V2(f), when f∈S0H and the result is sharp. Then, we determine the radius rn∈(0,1) so that Vn(f) is univalent and fully starlike in |z|<rn, whenever f is univalent and fully starlike harmonic mapping in D. We also discuss about the geometry preserving nature of Vn(f), when f belongs to some well known geometric subclasses of SH.en_US
dc.language.isoen_USen_US
dc.subjectDe la Vallée Poussin meansen_US
dc.subjectUnivalent harmonic polynomialen_US
dc.subjectStarlikeen_US
dc.subjectConvexen_US
dc.subjectPartial sumsen_US
dc.titleOn De la Vallée Poussin means for harmonic mappingsen_US
dc.typeArticleen_US
Appears in Collections:Year-2022

Files in This Item:
File Description SizeFormat 
Full Text.pdf375.12 kBAdobe PDFView/Open    Request a copy


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.