Please use this identifier to cite or link to this item: http://dspace.iitrpr.ac.in:8080/xmlui/handle/123456789/370
Full metadata record
DC FieldValueLanguage
dc.contributor.authorNishad, A.K.
dc.contributor.authorSharma, R.
dc.date.accessioned2016-11-17T05:55:49Z
dc.date.available2016-11-17T05:55:49Z
dc.date.issued2016-11-17
dc.identifier.urihttp://localhost:8080/xmlui/handle/123456789/370
dc.description.abstractDue to their higher resistance, single layer graphene nanoribbons (GNRs) are not suitable for high-speed on-chip interconnect applications. Hence, we use multilayer GNRs (MLGNRs) that offer multiple conduction channels and lower resistance. However, MLGNRs turn into graphite as the number of layers increase, which reduces the mean-free path of each layer. Insertion of a dielectric between GNR layers prevents its conversion into graphite, thereby improving its mean-free path and scattering rate. In this paper, we are proposing an analytical model for the time-domain analysis of side-contact MLGNRs (SC-MLGNRs) with intermediate dielectric insertion. The proposed model computes scattering rate, mean-free path, and carrier mobility in GNRs where dielectric has been inserted between individual layers. Our analytical results for mobility and scattering rate have been verified with the existing experimental data that exhibit excellent accuracy (maximum of error 4% for mobility and 16% for scattering time). Based on our analysis, we have found that the electron mean-free path in GNRs strongly depends on surrounding dielectric environment. In that, the mean-free path increases with interlayer insertion of high-k dielectrics. Equivalent RLC parameters, delay, energy-delay product, and bandwidth density are calculated for our proposed GNR interconnects using our model. We observe that these performance metrics significantly improve due to the presence of dielectric between GNR layers. When compared with Cu interconnects, insertion of HfO2 between GNR layers results in reduction in both propagation delay and energy-delay product by 2 × for interconnect lengths of 1400 μm. In addition, zigzag SC-MLGNR interconnect with N=10 and 2=20 gives nearly 35% higher bandwidth density than that of Cu interconnects for all interconnect lengths. In our analysis, we propose a new performance metric, bandwidth density/energy-delay product to determine the performance limits of our proposed interconnect structure. Finally, we compare the performance of SC-MLGNR interconnect structure with copper and optical interconnects to exhibit its application in local and global interconnects.en_US
dc.language.isoen_USen_US
dc.subjectGraphene nanoRibbonsen_US
dc.subjectDielectricsen_US
dc.subjectInterconnectsen_US
dc.subjectMean free pathen_US
dc.subjectDelayen_US
dc.subjectEnergy-delay producten_US
dc.subjectBandwidth densityen_US
dc.titlePerformance improvement in SC-MLGNRs interconnects using interlayer dielectric insertionen_US
dc.typeArticleen_US
Appears in Collections:Year-2015

Files in This Item:
File Description SizeFormat 
Full Text.pdf8.75 MBAdobe PDFView/Open    Request a copy


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.