Please use this identifier to cite or link to this item: http://dspace.iitrpr.ac.in:8080/xmlui/handle/123456789/3843
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMadan, S.-
dc.contributor.authorGahalawat, M.-
dc.contributor.authorGuha, T.-
dc.contributor.authorSubramanian, R.-
dc.date.accessioned2022-08-21T07:38:13Z-
dc.date.available2022-08-21T07:38:13Z-
dc.date.issued2022-08-21-
dc.identifier.urihttp://localhost:8080/xmlui/handle/123456789/3843-
dc.description.abstractWe demonstrate the utility of elementary head-motion units termed kinemes for behavioral analytics to predict personality and interview traits. Transforming head-motion patterns into a sequence of kinemes facilitates discovery of latent temporal signatures characterizing the targeted traits, thereby enabling both efficient and explainable trait prediction. Utilizing Kinemes and Facial Action Coding System (FACS) features to predict (a) OCEAN personality traits on the First Impressions Candidate Screening videos, and (b) Interview traits on the MIT dataset, we note that: (1) A Long-Short Term Memory (LSTM) network trained with kineme sequences performs better than or similar to a Convolutional Neural Network (CNN) trained with facial images; (2) Accurate predictions and explanations are achieved on combining FACS action units (AUs) with kinemes, and (3) Prediction performance is affected by the time-length over which head and facial movements are observed.en_US
dc.language.isoen_USen_US
dc.subjectAction unitsen_US
dc.subjectBehavioral analyticsen_US
dc.subjectExplainable predictionen_US
dc.subjectHead-motion unitsen_US
dc.subjectKinemesen_US
dc.subjectPersonality and interview traitsen_US
dc.titleHead matters: Explainable human-centered trait prediction from head motion dynamicsen_US
dc.typeArticleen_US
Appears in Collections:Year-2021

Files in This Item:
File Description SizeFormat 
Full Text.pdf2.84 MBAdobe PDFView/Open    Request a copy


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.