Please use this identifier to cite or link to this item: http://dspace.iitrpr.ac.in:8080/xmlui/handle/123456789/3914
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBeura, S.-
dc.contributor.authorSoni, D.K.-
dc.contributor.authorPadhy, B.P.-
dc.date.accessioned2022-08-25T16:44:28Z-
dc.date.available2022-08-25T16:44:28Z-
dc.date.issued2022-08-25-
dc.identifier.urihttp://localhost:8080/xmlui/handle/123456789/3914-
dc.description.abstractIn this paper, automatic generation control problem is inspected and different modelling parameters are decided. Initially Genetic algorithm (GA) based parameters of proportional-integral-derivative (PID) controller is applied to the model. Then Q learning (Reinforcement learning) applied to control the frequency and tie line power deviation by controlling the power mismatch between generators and loads. Area control error (ACE) are used as objective function for PID and RL controller respectively. Q-learning based reinforcement agent is introduced which takes the action according to averaged ACE values. Parameters like step size, discount rate, and exploration rate decides the effectiveness of the RL scheme.en_US
dc.language.isoen_USen_US
dc.subjectACEen_US
dc.subjectAGCen_US
dc.subjectGAen_US
dc.subjectPIDen_US
dc.subjectQ-learningen_US
dc.subjectRLen_US
dc.titleLoad frequency control of two area microgrid using reinforcement learning controlleren_US
dc.typeArticleen_US
dc.typeBooken_US
Appears in Collections:Year-2021

Files in This Item:
File Description SizeFormat 
Full Text.pdf1.46 MBAdobe PDFView/Open    Request a copy


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.