Please use this identifier to cite or link to this item: http://dspace.iitrpr.ac.in:8080/xmlui/handle/123456789/3933
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKushwaha, S.-
dc.contributor.authorAttar, A.-
dc.contributor.authorTrinchero, R.-
dc.contributor.authorCanavero, F.-
dc.contributor.authorSharma, R.-
dc.contributor.authorRoy, S.-
dc.date.accessioned2022-08-26T17:14:22Z-
dc.date.available2022-08-26T17:14:22Z-
dc.date.issued2022-08-26-
dc.identifier.urihttp://localhost:8080/xmlui/handle/123456789/3933-
dc.description.abstractIn this paper, a knowledge-based machine learning technique has been presented for estimating the per-unit-length parameters of hybrid copper-graphene interconnect networks. The salient feature of the proposed technique is its ability to be trained using significantly smaller amounts of full-wave electromagnetic (EM) solver data compared to conventional machine learning regression techniques, such as artificial neural networks (ANNs) and support vector machines (SVMs).en_US
dc.language.isoen_USen_US
dc.subjectArtificial neural network (ANN)en_US
dc.subjectCopper-graphene hybrid interconnectsen_US
dc.subjectPer-unit-length parametersen_US
dc.subjectSupport vector machine (SVM)en_US
dc.subjectTraining dataen_US
dc.subjectVariability analysisen_US
dc.titleFast extraction of per-unit-length parameters of hybrid copper-graphene interconnects via generalized knowledge based machine learningen_US
dc.typeArticleen_US
Appears in Collections:Year-2021

Files in This Item:
File Description SizeFormat 
Full Text.pdf313.38 kBAdobe PDFView/Open    Request a copy


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.