Please use this identifier to cite or link to this item: http://dspace.iitrpr.ac.in:8080/xmlui/handle/123456789/4051
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSharma, K.-
dc.contributor.authorSingh, G.-
dc.contributor.authorGoyal, P.-
dc.date.accessioned2022-09-25T21:01:02Z-
dc.date.available2022-09-25T21:01:02Z-
dc.date.issued2022-09-26-
dc.identifier.urihttp://localhost:8080/xmlui/handle/123456789/4051-
dc.description.abstractWith the advancement of photo editing softwares, nowadays facial retouching becomes a common practice across different social media platforms, Curriculum Vitae (CV) related websites, photo sharing applications, and magazines publishing flawless facial images of celebrities. In this paper, we propose an improvised patch-based deep convolution neural network (IPDCN2) to classify whether a facial image is original or retouched. The proposed network comprises of three stages i.e., pre-processing, high-level features extraction, and classification. Initially, we propose a pre-processing stage to extract only relevant patches from the input image by using 68 facial landmarks. In the second stage, an efficient and robust CNN based on residual learning is employed to extract the high-level hierarchical features from these patches. The proposed network uses the concept of re- sidual learning with the help of max pooling layers to maximize the information flow across the neural network. Lastly, the extracted high-level features are passed to fully-connected layers for classification. The experimental results show that proposed network outperforms the existing state-of-the-art techniques by providing an accuracy of 99.84% on ND-IIITD dataset. Moreover, proposed network provides a classification accuracy of 95.80%, 83.70%, and 97.30% on YMU, VMU, and MIW make-up datasets, respectively.en_US
dc.language.isoen_USen_US
dc.subjectMultimedia forensicsen_US
dc.subjectFacial retouchingen_US
dc.subjectConvolution neural networken_US
dc.subjectResidual skip connectionen_US
dc.titleIPDCN2: Improvised Patch-based Deep CNN for facial retouching detectionen_US
dc.typeArticleen_US
Appears in Collections:Year-2022

Files in This Item:
File Description SizeFormat 
Full Text.pdf4.08 MBAdobe PDFView/Open    Request a copy


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.