Please use this identifier to cite or link to this item: http://dspace.iitrpr.ac.in:8080/xmlui/handle/123456789/4260
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKayumov, I.R.-
dc.contributor.authorPonnusamy, S.-
dc.contributor.authorKaliraj, A.S.-
dc.date.accessioned2022-12-02T05:37:09Z-
dc.date.available2022-12-02T05:37:09Z-
dc.date.issued2022-12-02-
dc.identifier.urihttp://localhost:8080/xmlui/handle/123456789/4260-
dc.description.abstractIn this article, we prove the Riesz - Fejér inequality for complex-valued harmonic functions in the harmonic Hardy space hp for all p > 1. The result is sharp for p ∈ (1,2]. Moreover, we prove two variant forms of Riesz-Fejér inequality for harmonic functions, for the special case p = 2.en_US
dc.language.isoen_USen_US
dc.subjectHarmonic hardy spacesen_US
dc.subjectIntegral meansen_US
dc.subjectRiesz - Fejér type inequalitiesen_US
dc.titleRiesz-Fejer inequalities for harmonic functionsen_US
dc.typeArticleen_US
Appears in Collections:Year-2020

Files in This Item:
File Description SizeFormat 
Full Text.pdf447.02 kBAdobe PDFView/Open    Request a copy


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.