Please use this identifier to cite or link to this item: http://dspace.iitrpr.ac.in:8080/xmlui/handle/123456789/4451
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGupta, N-
dc.contributor.authorKumar, A-
dc.date.accessioned2024-05-11T10:35:55Z-
dc.date.available2024-05-11T10:35:55Z-
dc.date.issued2024-05-11-
dc.identifier.urihttp://dspace.iitrpr.ac.in:8080/xmlui/handle/123456789/4451-
dc.description.abstractAbstract: In this article, we introduce fractional Poisson fields of order k in n-dimensional Euclidean space of positive real valued vectors. We also work on time-fractional Poisson process of order k, space-fractional Poisson processes of order k and a tempered version of time-space fractional Poisson processes of order k. We discuss generalized fractional Poisson processes of order k in terms of Bernstein functions. These processes are defined in terms of fractional compound Poisson processes. The time-fractional Poisson process of order k naturally generalizes the Poisson process and the Poisson process of order k to a heavy-tailed waiting-times counting process. The space-fractional Poisson process of order k allows on average an infinite number of arrivals in any interval. We derive the marginal probabilities governing difference–differential equations of the introduced processes. We also provide the Watanabe martingale characterization for some time-changed Poisson processes.en_US
dc.language.isoen_USen_US
dc.subjectTime-fractional Poisson processen_US
dc.subject· Poisson process of order ken_US
dc.subjectSpace-fractional Poisson processen_US
dc.subjectInfinite divisibilityen_US
dc.subjectHomogeneous Poisson fielden_US
dc.titleFractional Poisson Processes of Order k and Beyonden_US
dc.typeArticleen_US
Appears in Collections:Year-2023

Files in This Item:
File Description SizeFormat 
Full Text.pdf401.5 kBAdobe PDFView/Open    Request a copy


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.