Please use this identifier to cite or link to this item: http://dspace.iitrpr.ac.in:8080/xmlui/handle/123456789/4526
Full metadata record
DC FieldValueLanguage
dc.contributor.authorDhall, A.-
dc.contributor.authorSingh, M.-
dc.contributor.authorGoecke, R.-
dc.contributor.authorGedeon, T.-
dc.contributor.authorZemg, D.-
dc.contributor.authorWang, Y.-
dc.contributor.authorIkeda, K.-
dc.date.accessioned2024-05-20T13:23:49Z-
dc.date.available2024-05-20T13:23:49Z-
dc.date.issued2024-05-20-
dc.identifier.urihttp://dspace.iitrpr.ac.in:8080/xmlui/handle/123456789/4526-
dc.description.abstractThis paper describes the 9th Emotion Recognition in the Wild (EmotiW) challenge, which is being run as a grand challenge at the 25th ACM International Conference on Multimodal Interaction 2023. EmotiW challenge focuses on afect related benchmarking tasks and comprises of two sub-challenges: a) User Engagement Prediction in the Wild, and b) Audio-Visual Group-based Emotion Recognition. The purpose of this challenge is to provide a common platform for researchers from diverse domains. The objective is to promote the development and assessment of methods, which can predict engagement levels and/or identify perceived emotional well- being of a group of individuals in real-world circumstances. We describe the datasets, the challenge protocols and the accompanying sub-challenge.en_US
dc.language.isoen_USen_US
dc.subjectAfective Computingen_US
dc.subjectGroup Emotionsen_US
dc.subjectEngagementen_US
dc.titleEmotiW 2023: Emotion Recognition in the Wild Challengeen_US
dc.typeArticleen_US
Appears in Collections:Year-2023

Files in This Item:
File Description SizeFormat 
full text.pdf452.58 kBAdobe PDFView/Open    Request a copy


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.