Please use this identifier to cite or link to this item: http://dspace.iitrpr.ac.in:8080/xmlui/handle/123456789/4555
Title: A novel privacy protection approach with better human imperceptibility
Authors: Rana, K
Pandey, A
Goyal, P
Singh, G
Goyal, P
Keywords: Adversarial perturbation
Visual explanation techniques
Social media
Convolutional neural networks
Issue Date: 26-May-2024
Abstract: Abstract: Our generation is quite obsessed with technology and we like to share our personal information such as photos and videos on the internet via different social networking websites i.e. Facebook, Snapchat, Instagram, etc. Therefore, it becomes easier for others to breach our privacy and harm us in a direct or indirect way. Now, computerized systems have advanced due to the improvements in Machine Learning (ML) algorithms and Artificial Intelligence (AI). These algorithms can extract sensitive information such as face attributes, text information, etc. from images or videos and can be used for privacy breaching. In this paper, we propose a novel privacy protection method by adding intelligent noise to the image while preserving image aesthetics and attributes. We determine multiple attributes for an image such as baldness, smiling, gender, etc. and we intelligently add noise to particular regions of the image that define a particular attribute using the visual explanation technique i.e. GradCam++, thereby preserving the other attributes. The addition of noise is based on the idea of Fast Gradient Sign Method (FGSM) that maximizes the gradients of the loss of an input image to create a new adversarial image. We integrate FGSM adversarial image and GradCam++ output to affect particular attributes only and hence keeping the image human imperceptible. The experiment results show that our attack outperforms the existing attacks including naive FGSM, Projected Gradient Descent (PGD), Momentum Iterative Method (MIM), Shadow Attack (SA), and Fast Minimum Norm (FMN) in terms of preserving attributes and image visual quality, when evaluated on CelebA dataset.
URI: http://dspace.iitrpr.ac.in:8080/xmlui/handle/123456789/4555
Appears in Collections:Year-2023

Files in This Item:
File Description SizeFormat 
Full Text.pdf2.06 MBAdobe PDFView/Open    Request a copy


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.