Please use this identifier to cite or link to this item: http://dspace.iitrpr.ac.in:8080/xmlui/handle/123456789/488
Full metadata record
DC FieldValueLanguage
dc.contributor.authorChatterjee, T.-
dc.contributor.authorMurty, R.-
dc.date.accessioned2016-11-19T07:21:08Z-
dc.date.available2016-11-19T07:21:08Z-
dc.date.issued2016-11-19-
dc.identifier.urihttp://localhost:8080/xmlui/handle/123456789/488-
dc.description.abstractLet f : Z/qZ{long rightwards arrow}Z be such that f (a)=±1 for 1≤a <q, and f(q)=0. Then Erdős conjectured that Σn≥1 f(n)/n≠0. For q even, it is easy to show that the conjecture is true. The case q ≡ 3 (mod 4) was solved by Murty and Saradha. In this paper, we show that this conjecture is true for 82% of the remaining integers q ≡ 1 (mod 4).en_US
dc.language.isoen_USen_US
dc.subjectErdős conjectureen_US
dc.subjectNonvanishing of dirichlet seriesen_US
dc.subjectOkada's criterionen_US
dc.titleOn a conjecture of erdős and certain dirichlet seriesen_US
dc.typeArticleen_US
Appears in Collections:Year-2015

Files in This Item:
File Description SizeFormat 
Full Text.pdf116.01 kBAdobe PDFView/Open    Request a copy


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.