Please use this identifier to cite or link to this item: http://dspace.iitrpr.ac.in:8080/xmlui/handle/123456789/854
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKaur, K.-
dc.contributor.authorKhan, M.-
dc.date.accessioned2017-06-20T10:33:10Z-
dc.date.available2017-06-20T10:33:10Z-
dc.date.issued2017-06-20-
dc.identifier.urihttp://localhost:8080/xmlui/handle/123456789/854-
dc.description.abstractLet U(FG) denotes the unit group of FG. In this article, we compute the order of U(F(G ⋉ C2 n )) in terms of the order of U(FG) for an arbitrary nite group G, where C2 n is the cyclic group of order 2n and F is a nite eld of characteristic 2. Further, if A is an elementary abelian 2-group, then we obtain structures of U(F(G × A)) and its unitary subgroup U∗(F(G × A)), where ∗ is the canonical involution of the group algebra F(G × A). Finally, we provide a set of generators of U∗(FD4m) and U(FD4m). ARen_US
dc.language.isoen_USen_US
dc.subjectGroup algebraen_US
dc.subjectUnitary unitsen_US
dc.subjectUnit groupen_US
dc.titleUnits in modular group algebraen_US
dc.typeArticleen_US
Appears in Collections:Year-2017

Files in This Item:
File Description SizeFormat 
Full Text.pdf397.19 kBAdobe PDFView/Open    Request a copy


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.