Please use this identifier to cite or link to this item: http://dspace.iitrpr.ac.in:8080/xmlui/handle/123456789/996
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGajda, J.-
dc.contributor.authorKumar, A.-
dc.contributor.authorWyłomańska, A.-
dc.date.accessioned2018-11-12T05:50:30Z-
dc.date.available2018-11-12T05:50:30Z-
dc.date.issued2018-11-12-
dc.identifier.urihttp://localhost:8080/xmlui/handle/123456789/996-
dc.description.abstractWe consider symmetric stable Lévy motion time-changed by tempered stable subordinator. This process generalizes the normal inverse Gaussian process without drift term, introduced by Barndorff-Nielsen. The asymptotic tail behavior of the density function of this process and corresponding Lévy density is obtained. The governing Fokker–Planck–Kolmogorov equation of the density function of the introduced process in terms of shifted fractional derivative is established. Codifference and asymptotic behavior of the moments are discussed. Further, we also introduce and analyze stable subordinator delayed by tempered stable subordinator.en_US
dc.language.isoen_USen_US
dc.subjectStable Lévy motionen_US
dc.subjectTempered stable subordinatoren_US
dc.subjectSubordinationen_US
dc.subjectFokker–Planck–Kolmogorov equationen_US
dc.titleStable Lévy process delayed by tempered stable subordinatoren_US
dc.typeArticleen_US
Appears in Collections:Year-2019

Files in This Item:
File Description SizeFormat 
Full Text.pdf302.97 kBAdobe PDFView/Open    Request a copy


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.