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Abstract Understanding the erosion mechanism is a key

to improve the performance of material subjected to ero-

sive condition. Capability to predict the erosion mechanism

could prove to be useful tool. In this work, a parameter

named ‘‘erosion mechanism identifier,’’ n, is proposed to

predict the erosion mechanism in materials. Suitability of n
in predicting erosion mechanism of ductile and brittle

materials was evaluated using the data reported in the lit-

erature. It was observed that n is able to predict the erosion

mechanism for both categories of material. The predict-

ability of n was not restrained by different operating

conditions.

Keywords Erosive wear � Wear mechanisms � Tribology

databases � Hardness

List of symbols

E Erosion rate

H Hardness

K Toughness

V Volume loss

m Mass of erodent particles

v Velocity of erodent particles

Greek symbols

g Erosion efficiency

n Erosion mechanism identifier

r Critical stress

ru Ultimate tensile strength

rR Transverse rupture strength

su Ultimate shear strength

1 Introduction

Erosion is a type of wear wherein the degradation of the

solid target surface takes places due to impingement of

solid and/or liquid particles. Slurry erosion is a type of

erosion wherein material is removed from the target sur-

face due to impingement of solid particles entrained in

liquid medium. It is termed as solid particle erosion if in

place of liquid, air acts as a carrier medium. The mecha-

nism responsible for removal of material is the function of

operating parameters, among which velocity (v) and angle

of impingement (h) are most influential.

Understanding erosion mechanism is very important as it

can help in identifying prominent properties that control the

erosion performance. With this knowledge, one can improve

the performance of erosion effected systems by employing

more suitable structural materials. Identification of erosion

mechanism is usually undertaken by studying the dependence

of erosion behavior upon angle of impingement. Material that

shows highest erosion rate at low angles (15�–30�) is said to

exhibit ductile mode of erosion [1–5]. On the other hand, if

maximum erosion rate is observed at 90� angle, material loss

is said to have taken place through brittle erosion mode [1–5].

However, as also pointed out by Sundararajan [6], this kind of

crude distinction of erosion mechanism based on dependence

of erosion behavior on h is not appropriate. Depending upon

the shape and hardness of erodent particles, the dependence of

erosion behavior on h can be totally altered. Ductile materials

can show higher erosion rates at 90� angle, whereas brittle

materials can exhibit maximum erosion at low impingement

angles [2, 7–11].
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2 Theory

Zum Gahr [12] proposed a model for abrasive wear which

could help in identifying the material removal mechanism.

For erosion, Sundararajan [6] proposed a parameter ‘‘ero-

sion efficiency,’’ g, which could help in predicting the

erosion mechanism in different materials. However, after

Sundararajan [6], no further work in this direction was

pursued. In his model given in Eq. (1), Sundararajan [6]

considered g as the ratio of the volume of material

removed to the volume of crater formed. The volume of the

crater formed was assumed to be the function of hardness

of the target material. In Eq. (1), H is hardness of the target

material, Vr, the volume of material removed, m and v, the

mass and velocity of the erodent particles, respectively.

This model was developed with an assumption that erodent

particles impact the solid surface at 90� angle. The value of

dimensionless g was related to the erosion mechanism. If

g[ 1; then, brittle mechanism is said to occur, however, if

g\ 1, plastic deformations are assumed to control the

erosion mechanism. On the other hand, if g is equal to 1,

microcutting is said to persist. The authors have used the

data for erosion rates from the literature [13–22] so as to

test the validity of g under wide range of parameters and

materials.

g ¼ HV

0:5 mv2
ð1Þ

From the results discussed in next section, it can be

observed that g fails to predict accurately the erosion

mechanism for cast irons. Along with this, the inability of

g to predict erosion mechanism at angles \90� has

motivated the authors to devise new model, which could

overcome these issues.

To improve the predictability of the erosion mechanism,

a new parameter ‘‘erosion mechanism identifier,’’ n, is

proposed in present work. n is considered to be the ratio of

specific energies as shown in Eq. (2). Here, SER is the

specific energy required for the removal of the unit volume

of material, whereas SEE is the specific energy expended

in removing unit volume of material.

n ¼ SER

SEE
ð2Þ

SER is further considered to be the function of hardness

(H), toughness (K), and critical stress (r) of the target

material, Eq. (3). Critical stress (r) depends upon the type of

material. For brittle metals and alloys, r is considered to be

Fig. 1 Values of ‘‘erosion efficiency,’’ g for various materials eroded

at 90� impingement angle under different operating conditions

indicated against each case
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equal to ultimate tensile strength (ru) whereas, in case of

cermets, ceramics, and composites, transverse rupture

strength (rR) was considered. For ductile materials, r is

taken equivalent to ultimate shear stress (su). These are

usually the limiting stresses responsible for failure of

materials. Being the function of H, K, and r, the

expression for SER is proposed as given in Eq. (4). The

ratio of H and K in Eq. (4) represents the brittleness of the

material [23]. Although different forms of this function are

equally possible, however, convergence to the present form

was based upon the fact that the final expression should be

dimensionless. Additionally, brittleness has direct

correlation with the erosion performance of the material

[23–25]. With these at the backend, the function for SER

reduced to the form shown in Eq. (4). Within same category

of material, it has also been observed that with rise in

hardness, the erosion rate reduces.

SER ¼ f H;K;rð Þ ð3Þ

SER ¼ H

K

� �
� r ð4Þ

Now, SEE, the amount of energy expanded for

removing unit volume of material is given by Eq. (5).

Here, m is the total mass of the erodents used in erosion

testing and v is the average velocity of these erodent

particles coming out of the nozzle. V is the volume of the

material removed due to impingement of erodents of mass,

m. Substituting the expressions for SER and SEE from Eqs.

(4) and (5), respectively, in Eq. (2), the expression for
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erosion mechanism identifier, n, is shown in Eq. (6).

Alternatively, Eq. (7) can be used; in case erosion rate,

E (m3/Kg) is available.

SEE ¼ 0:5 mv2

V
ð5Þ

n ¼
Vr H

K

� �
0:5 mv2

ð6Þ

n ¼
Er H

K

� �
0:5 v2

ð7Þ

Erosion mechanism identifier, n, being the ratio of the

specific energies is a dimensionless term, and value of this n
could be used for predicting the erosion mechanism. When

SER is smaller than SEE, it would given\ 1. It means that we

need to expend more energy than that required for the removal

of unit volume of material. It is to be noticed that removal of

material through plastic deformation is a slow process. It

requires large number of impingement of erodents to remove

material [26]. Both ploughing and platelet mechanism of

erosion belongs to this category of erosion mechanism. On the

other hand, when SER is greater than SEE, it means that we

need to expend low amount of energy than required to remove

unit volume of material. This condition would be met when

removal of material takes place thought cracking and spalling,

a brittle erosion mode. This would result in value of n[ 1.

When n is equal to 1, SER would be equal to SEE. It is to be

considered that this condition would be met when energy

expended would be just equivalent to that required for erosion.

This balance is met in microcutting, where material is

removed through shearing process.

3 Results and Discussion

The values of g for different categories of materials at

h = 90� are shown in Fig. 1. Along with each case, a

remark could be found which either indicates the type of

erodent particle or indicates the average particle size. It can

be observed that g fails to predict accurately the erosion

mechanism for cast irons. Three types of cast irons (gray,

low Cr, and high Cr) were studied here; however, it can be

observed that for all these cast irons, g is \1 (Fig. 1). This

indicates the plastic deformations being the prominent

erosion mechanism for cast irons, which otherwise is

opposite to the actual observations. Cast irons normally

erode in brittle manner through cracking and spalling.

The value of n for different categories of materials eroded

under various operating conditions is shown in Figs. 2 and 3

using the results reported in the literature [9–38]. The values

of H, K, and r used for calculating n are given in Tables 1

and 2. It was observed that although a large amount of the

literature is available in the field of mechanical erosion,

however, most of it could not be used here due to lack of

reported data. The required values of K and r could not be

found for majority of the cases, especially for ceramic and

Table 1 Mechanical properties of different metals and alloys used in

calculating the values of ‘‘erosion efficiency,’’ g and ‘‘erosion

mechanism identifier,’’ n

Material Hardness,

H (HV)

Toughness,

K (Mpa)

Critical stress,

r (MPa)

Al 1100 38.5 10.0 89.7

Low Cr cast iron 778 7.0 1,011

AISI 5117 steel 200 115.8 568

CA6NM steel 336 1,025 697

16Cr5Ni steel 352 1,100 750

21Cr4N steel 320 900 507

AISI 4140 steel 190 42.0 461

Copper 39.6 17.0 100

High Cr cast iron 591 7.0 689

Gray cast iron 180 1.6 250

Table 2 Mechanical properties of different cermets, ceramics, and

composites used for calculating the values of ‘‘erosion mechanism

identifier,’’ n

Material Hardness,

H (HV)

Fracture

toughness,

K (MpaHm)

Critical

stress,

r (MPa)

WC-6Co 1,315 8.5–16 2,210

WC-8Co 1,292 10.5 1,500

WC-10Co 1,224 12 1,595

WC-15Co 1,029 15.8 2,371

WC-25Co 950 25 2,500

TiC ? 40 % FeCr7Si1.7 1,360 13.2 2,000

TiC ? 40 % (Ni:Mo) 1,330 17.5 890

TiC ? 40 % (2Ni:Mo) 1,200 17.8 1,320

TiC ? 40 % (4Ni:Mo) 1,068 18.2 1,430

Cr3C2 ? 15Ni 1,410 9.8 900

Cr3C2 ? 10Ni 1,450 7.8 960

Cr3C2 ? 20Ni 1,270 14.2 1,100

Al2O3 1,790–1,500 3.5–4.2 431–380

Al2O3 ? 5SiC 1,930 5.1 646

Al2O3 ? 10SiC 2,010 5.2 560

Al2O3 ? 15SiC 2,080 5.4 549

Al2O3 ? 10 vol. Cr3C2 1,680 5.1 495

Si3N4 1,450 6.5 945

Si3N4 ? 6 % Y2O5 1,420–1,530 4.9–4.3 664–1,108

Si3N4 ? Si2N2O 1,530 4.6 1,085

SIALON 101 1,675 3 945

Partially stabilized

zirconia (PSZ)

1,489 6 700

SiC ? 55 % (W,Ti)C 2,550 4.92 548.6

SiC 2,255 2.8 550
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cermets. Therefore, in place of toughness, fracture toughness

was used when investigating the ceramics, cermets, and

composites. Further, transverse rupture strength was used as

a critical stress for these classes of materials. In Table 1,

wherever the values of K or r were not reported by inves-

tigators were obtained from Ref [39]. Micrographs showing

the erosion mechanisms of different class of materials could

be found in Fig. 4.

From Fig. 2, it can be observed that n is more useful in

predicting the erosion mechanism in comparison with g. It

can be observed that value of n for cast irons is greater than

1, whereas for all other materials representing the ductile

category of materials, n is less than 1. The erosion mech-

anism in three different grades of cast iron was effectively

predicted by n. Moreover, n was also able to predict the

erosion mechanism at different impingement angles, a

Fig. 4 SEM micrographs illustrating the morphology of the eroded

surfaces of various materials at different operating conditions. a AISI

5117 steel eroded at 30� [15]. b 21-4-N steel eroded at 30� [17, 18].

c CA6NM steel eroded at 30� [17, 18]. d CA6NM steel eroded at 90�

[17, 18]. e Cast iron eroded at 45� [22]. f WC–Co eroded at 75� [27].

g Alumina eroded at 90� [35]. h SiC eroded [35]. i Cr3C2 ? 20 % Ni

eroded at 60� [33]. j Zirconia (PSZ) [35]

Tribol Lett (2013) 51:1–7 5
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limitation observed in case of g. For h = 45�, gray cast

iron showed a brittle mechanism [22] as also predicted by

n. A scanning electron microscopic micrograph of the

eroded surface of cast iron as shown in Fig. 4e confirms

this prediction. Here, craters formed due to brittle fracture

could be clearly observed. For comprehensiveness, mor-

phology of eroded materials showing ductile mode of

erosion has also been shown in Fig. 4a–d.

Figure 3 further highlights the predictive capabilities of the

n. Here, erosion mechanism of other categories of materials

viz. cermets, ceramics, and composites was predicted using n.

It can be observed that n successfully predicts the erosion

mechanism of these materials as well. With the exception of

zirconia (PSZ), value of n for all other materials C1, this

indicates the dominance of brittle erosion mode. In case of

zirconia (PSZ), value ofnwas\1, represents the predominance

of ductile erosion mechanism. Although zirconia belongs to the

brittle class of materials, however, it still showed ductile ero-

sion mode which could also be observed from Fig. 4j [35].

Fang et al. [35], while conducting investigations on zirconia,

also suggested that it shows ductile erosion mechanism. This

further strengthens the predictive capabilities of n.

The variation in n with brittleness (H/K) is shown in

Fig. 5, which is a log–log plot. Although highly scattered, a

linear correlation between n and brittleness could be

expected. Correlation parameters, Adj. R2 of around 0.79,

were found while fitting a linear curve to these data point.

Correlation dependence of this level do indicates some

linear dependency between the n and brittleness (H/K).

This indicates that brittleness plays a dominant role in

controlling the erosion mechanism of the materials. With

an increase in brittleness, the tendency of material to erode

through brittle mode also increases. However, there must

be some transition level, beyond which the erosion mech-

anism exhibited by the material transits from one mode to

another. Therefore, it can be concluded that for improved

erosion resistance, other than hardness and/or toughness,

brittleness of the material should also be taken into

account. A material with high brittleness could be expected

to exhibit low resistance against erosion.

4 Conclusion

A new parameter named ‘‘erosion mechanism identifier’’ (n)

was introduced in this work which could help in predicting

the erosion mechanism in materials. In comparison with

existing parameter (erosion efficiency), the proposed

parameters were able to predict the erosion mechanism more

accurately. This new parameter addressed the limitations of

the older one and facilitated the erosion mechanism pre-

diction at different operating conditions. A linear correlation

between the brittleness and n was also observed. It indicates

that the tendency of material to exhibit brittle erosion

mechanism increases with increase in brittleness.
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