INSTITUTIONAL DIGITAL REPOSITORY

Non-modal stability analysis of miscible viscous fingering with non-monotonic viscosity profiles

Show simple item record

dc.contributor.author Hota, T.K.
dc.contributor.author Mishra, M.
dc.date.accessioned 2018-12-27T12:46:45Z
dc.date.available 2018-12-27T12:46:45Z
dc.date.issued 2018-12-27
dc.identifier.uri http://localhost:8080/xmlui/handle/123456789/1079
dc.description.abstract A non-modal linear stability analysis (NMA) of the miscible viscous fingering in a porous medium is studied for a toy model of non-monotonic viscosity variation. The onset of instability and its physical mechanism are captured in terms of the singular values of the propagator matrix corresponding to the non-autonomous linear equations. We discuss two types of non-monotonic viscosity profiles, namely, with unfavorable (when a less viscous fluid displaces a high viscous fluid) and with favorable (when a more viscous fluid displaces a less viscous fluid) end-point viscosities. A linear stability analysis yields instabilities for such viscosity variations. Using the optimal perturbation structure, we are able to show that an initially unconditional stable state becomes unstable corresponding to the most unstable initial disturbance. In addition, we also show that to understand the spatiotemporal evolution of the perturbations it is necessary to analyse the viscosity gradient with respect to the concentration and the location of the maximum concentration cm. For the favorable end-point viscosities, a weak transient instability is observed when the viscosity maximum moves close to the pure invading or defending fluid. This instability is attributed to an interplay between the sharp viscosity gradient and the favorable end-point viscosity contrast. Further, the usefulness of the non-modal analysis demonstrating the physical mechanism of the quadruple structure of the perturbations from the optimal concentration disturbances is discussed. We demonstrate the dissimilarity between the quasi-steady-state approach and NMA in finding the correct perturbation structure and the onset, for both the favorable and unfavorable viscosity profiles. The correctness of the linear perturbation structure obtained from the non-modal stability analysis is validated through nonlinear simulations. We have found that the nonlinear simulations and NMA results are in good agreement. In summary, a non-monotonic variation of the viscosity of a miscible fluid pair is seen to have a larger influence on the onset of fingering instabilities, than the corresponding Arrhenius type relationship. en_US
dc.language.iso en_US en_US
dc.title Non-modal stability analysis of miscible viscous fingering with non-monotonic viscosity profiles en_US
dc.type Article en_US


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search DSpace


Advanced Search

Browse

My Account