Abstract:
Determination of mechanical loading regimen that would induce a prescribed new bone formation rate
and its site-specifc distribution, may be desirable to treat some orthopaedic conditions such as bone
loss due to muscle disuse, e.g. because of space fight, bed-rest, osteopenia etc. Site-specifc new bone
formation has been determined earlier experimentally and numerically for a given loading regimen;
however these models are mostly non-invertible, which means that they cannot be easily inverted to
predict loading parameters for a desired new bone formation. The present work proposes an invertible
model of bone remodeling, which can predict loading parameters such as peak strain, or magnitude
and direction of periodic forces for a desired or prescribed site-specifc mineral apposition rate (MAR),
and vice versa. This fast, mathematical model has a potential to be developed into an important aid for
orthopaedic surgeons for prescribing exercise or exogenous loading of bone to treat bone-loss due to
muscle disuse.