INSTITUTIONAL DIGITAL REPOSITORY

Linear independence of harmonic numbers over the field of algebraic numbers

Show simple item record

dc.contributor.author Chatterjee, T.
dc.contributor.author Dhillon, S.
dc.date.accessioned 2020-03-13T10:54:21Z
dc.date.available 2020-03-13T10:54:21Z
dc.date.issued 2020-03-13
dc.identifier.uri http://localhost:8080/xmlui/handle/123456789/1527
dc.description.abstract Let Hn = n k=1 1 k be the nth harmonic number. Euler extended it to complex arguments and defined Hr for any complex number r except for the negative integers. In this paper, we give a new proof of the transcendental nature of Hr for rational r. For some special values of q > 1, we give an upper bound for the number of linearly independent harmonic numbers Ha/q with 1 ≤ a ≤ q over the field of algebraic numbers. Also, for any finite set of odd primes J with |J | = n, define WJ = Q − span of H1, Ha j i /qi |1 ≤ a ji ≤ qi − 1, 1 ≤ ji ≤ qi − 1, ∀qi ∈ J . Finally, we show that dim Q WJ = n i=1 qi∈J φ(qi) 2 en_US
dc.language.iso en_US en_US
dc.subject Baker’s Theory en_US
dc.subject Digamma function en_US
dc.subject Galois theory en_US
dc.subject Gauss formula en_US
dc.subject Harmonic Numbers en_US
dc.subject Linear forms in logarithm en_US
dc.subject Linear independence en_US
dc.title Linear independence of harmonic numbers over the field of algebraic numbers en_US
dc.type Article en_US


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search DSpace


Advanced Search

Browse

My Account