dc.contributor.author | Chatterjee, T. | |
dc.contributor.author | Dhillon, S. | |
dc.date.accessioned | 2020-03-13T10:54:21Z | |
dc.date.available | 2020-03-13T10:54:21Z | |
dc.date.issued | 2020-03-13 | |
dc.identifier.uri | http://localhost:8080/xmlui/handle/123456789/1527 | |
dc.description.abstract | Let Hn = n k=1 1 k be the nth harmonic number. Euler extended it to complex arguments and defined Hr for any complex number r except for the negative integers. In this paper, we give a new proof of the transcendental nature of Hr for rational r. For some special values of q > 1, we give an upper bound for the number of linearly independent harmonic numbers Ha/q with 1 ≤ a ≤ q over the field of algebraic numbers. Also, for any finite set of odd primes J with |J | = n, define WJ = Q − span of H1, Ha j i /qi |1 ≤ a ji ≤ qi − 1, 1 ≤ ji ≤ qi − 1, ∀qi ∈ J . Finally, we show that dim Q WJ = n i=1 qi∈J φ(qi) 2 | en_US |
dc.language.iso | en_US | en_US |
dc.subject | Baker’s Theory | en_US |
dc.subject | Digamma function | en_US |
dc.subject | Galois theory | en_US |
dc.subject | Gauss formula | en_US |
dc.subject | Harmonic Numbers | en_US |
dc.subject | Linear forms in logarithm | en_US |
dc.subject | Linear independence | en_US |
dc.title | Linear independence of harmonic numbers over the field of algebraic numbers | en_US |
dc.type | Article | en_US |