INSTITUTIONAL DIGITAL REPOSITORY

Fluid morphologies governed by the competition of viscous dissipation and phase separation in a radial hele-shaw flow

Show simple item record

dc.contributor.author Suzuki, R. X.
dc.contributor.author Takeda, R.
dc.contributor.author Nagatsu, Y.
dc.contributor.author Mishra, M.
dc.contributor.author Ban, T.
dc.date.accessioned 2021-06-09T20:31:19Z
dc.date.available 2021-06-09T20:31:19Z
dc.date.issued 2021-06-10
dc.identifier.uri http://localhost:8080/xmlui/handle/123456789/1787
dc.description.abstract The displacement of a less viscous fluid by a more viscous fluid in a radial Hele-Shaw cell makes a circular pattern because the interface is hydrodynamically stable in this condition. Very recently, it has been experimentally reported that the hydrodynamically stable displacement in a partially miscible system induces fingering patterns while stable circular patterns are made at fully miscible and immiscible systems. The fingering instability in the partially miscible system results from complex and entangled elements involving viscous dissipation, molecular diffusion, and phase separation. The analyzing mechanism requires a quantitative relationship between the hydrodynamic interfacial fingering patterns and underlying physicochemical properties. Here, we experimentally investigated the change in fluid patterns formed by the progression of phase separation in the partially miscible systems and categorized them into three patterns: finger-like pattern, annular-like pattern, and circular pattern. Moreover, we propose the mechanism of the pattern formation by an interfacial tension measurement and evaluate the patterns by modified capillary number and newly defined body force ratio, Bf . Our analysis revealed that the deformation index of the pattern can be expressed as a function of Bf on a single curve regardless of the miscibility en_US
dc.language.iso en_US en_US
dc.subject fluid displacement en_US
dc.subject inverse Saffman–Taylor instability en_US
dc.subject partially miscible en_US
dc.subject Korteweg force en_US
dc.title Fluid morphologies governed by the competition of viscous dissipation and phase separation in a radial hele-shaw flow en_US
dc.type Article en_US


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search DSpace


Advanced Search

Browse

My Account