INSTITUTIONAL DIGITAL REPOSITORY

Deciphering the structural enigma of HLA class-II binding peptides for enhanced immunoinformatics-based prediction of vaccine epitopes

Show simple item record

dc.contributor.author Chatterjee, D.
dc.contributor.author Priyadarshini, P.
dc.contributor.author Das, D. K.
dc.contributor.author Mushtaq, K.
dc.contributor.author Singh, S.
dc.contributor.author Agrewala, J. N.
dc.date.accessioned 2021-06-30T22:38:39Z
dc.date.available 2021-06-30T22:38:39Z
dc.date.issued 2021-07-01
dc.identifier.uri http://localhost:8080/xmlui/handle/123456789/1935
dc.description.abstract Vaccines remain the most efficacious means to avoid and eliminate morbid diseases associated with high morbidity and mortality. Clinical trials indicate the gaining impetus of peptide vaccines against diseases for which an effective treatment still remains obscure. CD4 T-cell-based peptide vaccines involve immunization with antigenic determinants from pathogens or neoplastic cells that possess the ability to elicit a robust T helper cell response, which subsequently activates other arms of the immune system. The available in silico predictors of human leukocyte antigen II (HLA-II) binding peptides are sequence-based techniques, which ostensibly have balanced sensitivity and specificity. Structural analysis and understanding of the cognate peptide and HLA-II interactions are essential to empirically derive a successful peptide vaccine. However, the availability of structure-based epitope prediction algorithms is inadequate compared with sequence-based prediction methods. The present study is an attempt to understand the structural aspects of HLA-II binders by analyzing the Protein Data Bank (PDB) complexes of pHLA-II. Furthermore, we mimic the peptide exchange mechanism and demonstrate the structural implication of an acidic environment on HLA-II binders. Finally, we discuss a structure-guided approach to decipher potential HLA-II binders within an antigenic protein. This strategy may accurately predict the peptide epitopes and thus aid in designing successful peptide vaccines en_US
dc.language.iso en_US en_US
dc.subject HLA-II binders en_US
dc.subject peptide HLA-II interaction en_US
dc.subject torsion angles en_US
dc.subject structural immunology en_US
dc.subject molecular docking en_US
dc.subject molecular dynamics simulation en_US
dc.subject peptide vaccines en_US
dc.subject immunoinformatics en_US
dc.subject structure guided vaccine designing en_US
dc.title Deciphering the structural enigma of HLA class-II binding peptides for enhanced immunoinformatics-based prediction of vaccine epitopes en_US
dc.type Article en_US


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search DSpace


Advanced Search

Browse

My Account