INSTITUTIONAL DIGITAL REPOSITORY

Challenges, process requisites/inputs, mechanics and weld performance of dissimilar micro-friction stir welding (dissimilar μFSW): a comprehensive review

Show simple item record

dc.contributor.author Verma, M.
dc.contributor.author Ahmed, S.
dc.contributor.author Saha, P.
dc.date.accessioned 2021-07-18T07:26:03Z
dc.date.available 2021-07-18T07:26:03Z
dc.date.issued 2021-07-18
dc.identifier.uri http://localhost:8080/xmlui/handle/123456789/2112
dc.description.abstract Dissimilar micro-friction stir welding (dissimilar μFSW) can be a preferred choice for joining dissimilar materials having thickness ≤ 1000 μm. The technique's potential applications are in miniaturized components, where the inherent benefits of the process, such as low temperature, low distortion, and clean joining, are advantageous compared to fusion welding. However, the challenges associated with dissimilar μFSW hinder its full potential applications in the relevant industries. The challenges are particularly a combination of two different characteristics of the process (i) the complexities of simultaneously fulfilling the dissimilar materials' demands due to the vast differences in the two materials' mechanical and thermal properties and (ii) the problems due to reduced sheet thickness. In this regard, the present work is a comprehensive and timely review of the research works done on dissimilar μFSW targeted at easily acquainting the research community about the know-how and the state of the art of the process. The review is broadly divided into three crucial parts: the process inputs/requisites, process mechanics, and process performance. The details about the μFSW tool, process parameters, and relative sheet positioning are discussed under the heading process inputs/requisites. Concerning the process mechanics, the intermetallic compound formation, defect generation, and material mixing are discussed. The joints' resulting performance is shown by detailing the essential properties such as formability, residual stresses, fatigue, hardness, and tensile strength. Additionally, several future research directions are presented at the end of this critical review to motivate further improvements in this joining technique and instigate its utility in relevant industries. en_US
dc.language.iso en_US en_US
dc.subject Dissimilar micro-friction stir welding (dissimilar μFSW) en_US
dc.subject Material mixing en_US
dc.subject Intermetallics en_US
dc.subject Sheet positioning en_US
dc.subject Formability en_US
dc.subject Residual stress en_US
dc.title Challenges, process requisites/inputs, mechanics and weld performance of dissimilar micro-friction stir welding (dissimilar μFSW): a comprehensive review en_US
dc.type Article en_US


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search DSpace


Advanced Search

Browse

My Account