INSTITUTIONAL DIGITAL REPOSITORY

Static and time-dependent mechanical response of organic matrix of bone

Show simple item record

dc.contributor.author Saini, K.
dc.contributor.author Discher, D.
dc.contributor.author Kumar, N.
dc.date.accessioned 2021-08-24T21:14:09Z
dc.date.available 2021-08-24T21:14:09Z
dc.date.issued 2021-08-25
dc.identifier.uri http://localhost:8080/xmlui/handle/123456789/2482
dc.description.abstract Bone derives its mechanical strength from the complex arrangement of collagen fibrils (type-I primarily) reinforced with hydroxy-apatite (HAp) mineral crystals in extra- and intra-fibrillar compartments. This study demonstrates a novel approach to obtain organic matrix of bone through its demineralization as well as mechanically characterize it at small length scales using static and dynamic indentation techniques. Sample surface preparation protocol used in the present work maintained the surface integrity of demineralized bone samples which resulted sample surface of roughness (RMS) magnitude of approximately 14 nm (averaged over 1 × 1 μm2 area duly verified by atomic force microscope (AFM)). Elemental composition analysis via energy dispersive Xray spectroscopy (EDX) (for probed depth upto 2 μm) confirmed the complete removal of HAp mineral from bone samples during their demineralization using EDTA leaving collagen molecule assemblies unaffected as represented by Second Harmonic Generation (SHG) imaging. The modulus magnitudes of organic matrix obtained using from quasistatic as well as dynamic indentations (at constant frequency of 30 Hz) as ∼2.6 GPa and 4.5 GPa respectively, demonstrated the influence of loading rate on the estimated mechanical properties. For indentation depth to surface roughness ratio greater than ∼5:1, interestingly, measured material properties of organic matrix were found to depend on increasing magnitude of indentation depth of up to ∼500 nm value which probed from few collagen fibrils to next level of hierarchy i.e. collagen fibers. These findings are very useful to accurately determine the elastic and visco-elastic response of organic matrices of mineralized tissues for various applications including tissue engineering, bio-mimetics, etc. en_US
dc.language.iso en_US en_US
dc.subject Bone en_US
dc.subject Organic Matrix en_US
dc.subject Demineralization en_US
dc.subject Nanoindentation en_US
dc.subject SHG en_US
dc.subject AFM en_US
dc.subject SEM en_US
dc.title Static and time-dependent mechanical response of organic matrix of bone en_US
dc.type Article en_US


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search DSpace


Advanced Search

Browse

My Account