Abstract:
A preliminary model for estimating tool-chip friction in orthogonal cutting is proposed which utilizes the asperity deformation model of Challen and Oxley [14, 15], coupled with a method to estimate interfacial film formation between the tool and chip. Thus, the approach includes the chemical influence of the machining environment and the mechanical effects of the cutting tool’s surface roughness. Trends shown by the proposed model approximately match with experimental results. The model helps to explain experimental observations that using a rougher cutting tool sometimes reduces the severity of tool-chip friction compared to machining with tools having lower asperity slope.