INSTITUTIONAL DIGITAL REPOSITORY

A novel gold nanoparticle decorated nanocrystalline zeolite based electrochemical sensor for the nanomolar simultaneous detection of cysteine and glutathione†

Show simple item record

dc.contributor.author Kaur, B.
dc.contributor.author Srivastava, R.
dc.contributor.author Satpati, B.
dc.date.accessioned 2016-08-22T11:28:16Z
dc.date.available 2016-08-22T11:28:16Z
dc.date.issued 2016-08-22
dc.identifier.uri http://localhost:8080/xmlui/handle/123456789/258
dc.description.abstract In this work, highly dispersed gold nanoparticle decorated nanocrystalline zeolite was synthesized by the electrostatic interaction between the functionalized gold nanoparticles and functionalized nanocrystalline zeolite. An electrochemical sensor based on the gold nanoparticle decorated nanocrystalline zeolite was developed for the nanomolar simultaneous detection of cysteine and glutathione with high sensitivity, selectivity, and remarkably low detection limit. A wide linear range was obtained from 2 nM to 800 μM and 3 nM to 800 μM with a limit of detection of 0.3 nM and 0.6 nM for cysteine and glutathione, respectively. The analytical performance of the developed sensor was demonstrated in the determination of cysteine and glutathione in commercial pharmaceutical preparations with satisfactory results even in the presence of several amino acids. The proposed methodology provides promising application in clinical diagnostic and drug analysis. en_US
dc.language.iso en_US en_US
dc.title A novel gold nanoparticle decorated nanocrystalline zeolite based electrochemical sensor for the nanomolar simultaneous detection of cysteine and glutathione† en_US
dc.type Article en_US


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search DSpace


Advanced Search

Browse

My Account