INSTITUTIONAL DIGITAL REPOSITORY

A note on normal complement problem

Show simple item record

dc.contributor.author Kaur, K.
dc.contributor.author Khan, M.
dc.contributor.author Chatterjee, T.
dc.date.accessioned 2021-10-16T09:03:22Z
dc.date.available 2021-10-16T09:03:22Z
dc.date.issued 2021-10-16
dc.identifier.uri http://localhost:8080/xmlui/handle/123456789/3056
dc.description.abstract In this paper, we study the normal complement problem on semisimple group algebras and modular group algebras FG over a field F of positive characteristic. We provide an infinite class of abelian groups G and Galois fields F that have normal complement in the unit group U(FG) for semisimple group algebras FG. For metacyclic group G of order p1p2, where p1, p2 are distinct primes, we prove that G does not have normal complement in U(FG) for finite semisimple group algebra FG. Finally, we study the normal complement problem for modular group algebras over field of characteristic 2. en_US
dc.language.iso en_US en_US
dc.subject Group algebra en_US
dc.subject semisimple en_US
dc.subject normal complement en_US
dc.subject unitary units en_US
dc.subject unit group en_US
dc.subject bicyclic units en_US
dc.title A note on normal complement problem en_US
dc.type Article en_US


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search DSpace


Advanced Search

Browse

My Account