INSTITUTIONAL DIGITAL REPOSITORY

Disease detection in apple leaves using deep convolutional neural network

Show simple item record

dc.contributor.author Bansal, P.
dc.contributor.author Kumar, R.
dc.contributor.author Kumar, S.
dc.date.accessioned 2021-11-23T22:12:59Z
dc.date.available 2021-11-23T22:12:59Z
dc.date.issued 2021-11-24
dc.identifier.uri http://localhost:8080/xmlui/handle/123456789/3239
dc.description.abstract The automatic detection of diseases in plants is necessary, as it reduces the tedious work of monitoring large farms and it will detect the disease at an early stage of its occurrence to minimize further degradation of plants. Besides the decline of plant health, a country’s economy is highly affected by this scenario due to lower production. The current approach to identify diseases by an expert is slow and non-optimal for large farms. Our proposed model is an ensemble of pre-trained DenseNet121, EfficientNetB7, and EfficientNet NoisyStudent, which aims to classify leaves of apple trees into one of the following categories: healthy, apple scab, apple cedar rust, and multiple diseases, using its images. Various Image Augmentation techniques are included in this research to increase the dataset size, and subsequentially, the model’s accuracy increases. Our proposed model achieves an accuracy of 96.25% on the validation dataset. The proposed model can identify leaves with multiple diseases with 90% accuracy. Our proposed model achieved a good performance on different metrics and can be deployed in the agricultural domain to identify plant health accurately and timely. en_US
dc.language.iso en_US en_US
dc.subject machine learning en_US
dc.subject deep learning en_US
dc.subject convolutional neural network en_US
dc.subject transfer learning en_US
dc.subject DenseNet121 en_US
dc.subject EfficientNetB7 en_US
dc.subject NoisyStudent en_US
dc.title Disease detection in apple leaves using deep convolutional neural network en_US
dc.type Article en_US


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search DSpace


Advanced Search

Browse

My Account