INSTITUTIONAL DIGITAL REPOSITORY

Sc and Ti-functionalized 4-tert-butylcalix[4]arene as reversible hydrogen storage material

Show simple item record

dc.contributor.author Kumar, S.
dc.contributor.author Sathe, R.Y.
dc.contributor.author Kumar, D.T.J.
dc.date.accessioned 2022-08-25T10:50:27Z
dc.date.available 2022-08-25T10:50:27Z
dc.date.issued 2022-08-25
dc.identifier.uri http://localhost:8080/xmlui/handle/123456789/3889
dc.description.abstract Using the idea of metal functionalized material for H2 storage, 4-tert-butylcalix[4]arene (CA)functionalized with Sc and Ti atoms are explored. The first principles density functional theory (DFT)with M06 functional and 6-311G(d,p)basis set is used to explore the hydrogen storage properties of metal functionalized CA. Sc and Ti strongly binds with CA by Dewar coordination with high binding energy. It is found that maximum four hydrogen molecules are adsorbed on each metal site in Sc and Ti functionalized CA. Hydrogen molecules are adsorbed on metals by Kubas and Niu-Rao-Jena mechanism. In Sc functionalized CA system all 4 hydrogen molecules on each Sc bind in molecular fashion while on each Ti in Ti functionalized CA, the first hydrogen molecule binds in dissociative fashion and remaining three hydrogen molecules bind in a molecular form. The stability of Sc and Ti functionalized CA is studied by computing conceptual DFT parameters, which obeys maximum hardness and minimum electrophilicity principle. Hirshfeld charge analysis and electrostatic potential map explore the charge transfer mechanism during the hydrogen adsorption. Born-Oppenheimer molecular dynamics simulations are performed at temperature range 200–473 K to study the stability of the system and the reversibility of adsorbed hydrogen from the system. The calculated H wt% is found to be 10.3 and 10.1, respectively for Sc and Ti functionalized CA systems on complete H2 saturation. This study explores that Sc and Ti functionalized CA systems are efficient reversible hydrogen storage material. en_US
dc.language.iso en_US en_US
dc.subject Dewar coordination en_US
dc.subject Hydrogen adsorption-desorption en_US
dc.subject Kubas-Niu-Rao-Jena Interaction en_US
dc.subject Metal functionalization en_US
dc.subject Molecular dynamics en_US
dc.title Sc and Ti-functionalized 4-tert-butylcalix[4]arene as reversible hydrogen storage material en_US
dc.type Article en_US


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search DSpace


Advanced Search

Browse

My Account