INSTITUTIONAL DIGITAL REPOSITORY

Study of incomplete fusion reaction dynamics for the system 14N + 169Tm using the forward Recoil Range distribution technique

Show simple item record

dc.contributor.author Kumar, S.
dc.contributor.author Giri, P.K.
dc.contributor.author Kumar, R.
dc.contributor.author Yadav, A.
dc.contributor.author Ali, R.
dc.contributor.author Appannababu, S.
dc.contributor.author Agarwal, A.
dc.contributor.author Mukherjee, S.
dc.contributor.author Singh, P.P.
dc.contributor.author Singh, V. R.
dc.contributor.author Singh, B.P.
dc.contributor.author Dutta, S.
dc.date.accessioned 2022-09-27T06:37:16Z
dc.date.available 2022-09-27T06:37:16Z
dc.date.issued 2022-09-27
dc.identifier.uri http://localhost:8080/xmlui/handle/123456789/4069
dc.description.abstract Studies in the past have demonstrated that complete fusion and incomplete fusion (ICF) dynamics are both significant just above the Coulomb barrier, yet the dynamics of ICF are elusive since they are so complex below 10 MeV/nucleon. In order to investigate low-energy ICF dynamics, we measured the forward recoil range distribution (FRRD) of evaporation residues (ERs) populated in the system 14N + 169Tm at energy ≈5.9 MeV/nucleon. A stack target-catcher activation technique followed by offline-γ-spectroscopy was used to estimate the FRRD of the ERs. In order to investigate a new parameter for describing ICF dynamics, the ICF fraction (FICF(%)) for the present system was estimated from the range-integrated cross-sections and compared with other systems in the literature. The FRRD and range integrated cross-sections of seven ERs have been estimated experimentally. These cross-section results agree well with the experimental results obtained from the excitation functions. On re-investigation of entrance channel systematics for Qα-value of projectile, mass-asymmetry (μMA), and Coulomb factor (ZPZT), it has been found that the Qα-value systematic for 14N is not valid at all projectile energies. The FRRD measurement is one of the direct methods available to probe the complete and ICF contributions in ERs at low projectile energy. It has also been observed that the dynamics of ICF are not only dependent on the parameters of one entrance channel but on multiple entrance channels. We have also introduced the entrance channel parameter zeta (ζ) for the first time in ICF reactions to see the combined effect of mass-asymmetry (μMA) and ZPZT, as this parameter is better suited than μMA and ZPZT individually and has a linear dependency on FICF(%). en_US
dc.language.iso en_US en_US
dc.title Study of incomplete fusion reaction dynamics for the system 14N + 169Tm using the forward Recoil Range distribution technique en_US
dc.type Article en_US


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search DSpace


Advanced Search

Browse

My Account