INSTITUTIONAL DIGITAL REPOSITORY

Ultrathin Durable Organic Hydrophobic Coatings Enhancing Dropwise Condensation Heat Transfer

Show simple item record

dc.contributor.author Tripathy, A.
dc.contributor.author Regulagadda, K.
dc.contributor.author Lam, C.W.E
dc.contributor.author Dohnti, M.A.
dc.contributor.author Miloins, A.
dc.contributor.author Sharma, C.S.
dc.contributor.author Mitridis, E.
dc.contributor.author Suhutizus, T.M.
dc.contributor.author Poulikakos, D.
dc.date.accessioned 2022-09-27T07:21:21Z
dc.date.available 2022-09-27T07:21:21Z
dc.date.issued 2022-09-27
dc.identifier.uri http://localhost:8080/xmlui/handle/123456789/4074
dc.description.abstract Organic hydrophobic layers targeting sustained dropwise condensation are highly desirable but suffer from poor chemical and mechanical stability, combined with low thermal conductivity. The requirement of such layers to remain ultrathin to minimize their inherent thermal resistance competes against durability considerations. Here, we investigate the long-term durability and enhanced heat-transfer performance of perfluorodecanethiol (PFDT) coatings compared to alternative organic coatings, namely, perfluorodecyltriethoxysilane (PFDTS) and perfluorodecyl acrylate (PFDA), the latter fabricated with initiated chemical vapor deposition (iCVD), in condensation heat transfer and under the challenging operating conditions of intense flow (up to 9 m s −1 ) of superheated steam (111 °C) at high pressures (1.42 bar). We find that the thiol coating clearly outperforms the silane coating in terms of both heat transfer and durability. In addition, despite being only a monolayer, it clearly also outperforms the iCVDfabricated PFDA coating in terms of durability. Remarkably, the thiol layer exhibited dropwise condensation for at least 63 h (>2× times more than the PFDA coating, which survived for 30 h), without any visible deterioration, showcasing its hydrolytic stability. The cost of thiol functionalization per area was also the lowest as compared to all of the other surface hydrophobic treatments used in this study, thus making it the most efficient option for practical applications on copper substrates. en_US
dc.language.iso en_US en_US
dc.title Ultrathin Durable Organic Hydrophobic Coatings Enhancing Dropwise Condensation Heat Transfer en_US
dc.type Article en_US


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search DSpace


Advanced Search

Browse

My Account