dc.contributor.author | Kayumov, I.R. | |
dc.contributor.author | Ponnusamy, S. | |
dc.contributor.author | Kaliraj, A.S. | |
dc.date.accessioned | 2022-12-02T05:37:09Z | |
dc.date.available | 2022-12-02T05:37:09Z | |
dc.date.issued | 2022-12-02 | |
dc.identifier.uri | http://localhost:8080/xmlui/handle/123456789/4260 | |
dc.description.abstract | In this article, we prove the Riesz - Fejér inequality for complex-valued harmonic functions in the harmonic Hardy space hp for all p > 1. The result is sharp for p ∈ (1,2]. Moreover, we prove two variant forms of Riesz-Fejér inequality for harmonic functions, for the special case p = 2. | en_US |
dc.language.iso | en_US | en_US |
dc.subject | Harmonic hardy spaces | en_US |
dc.subject | Integral means | en_US |
dc.subject | Riesz - Fejér type inequalities | en_US |
dc.title | Riesz-Fejer inequalities for harmonic functions | en_US |
dc.type | Article | en_US |