INSTITUTIONAL DIGITAL REPOSITORY

Self-standing Fe3O4 decorated paper electrode as a binder-free trifunctional electrode for electrochemical ammonia synthesis and Zn–O2 batteries

Show simple item record

dc.contributor.author Kafle, A.
dc.contributor.author Gupta, D.
dc.contributor.author Bordoloi, A.
dc.contributor.author Nagaiah, T.C.
dc.date.accessioned 2022-12-15T10:26:43Z
dc.date.available 2022-12-15T10:26:43Z
dc.date.issued 2022-12-15
dc.identifier.uri http://localhost:8080/xmlui/handle/123456789/4309
dc.description.abstract The conversion of the abundant biodegradable material into electroactive electrode material can be a good resource for sustainable energy conversion and storage applications. Herein, we present a simple, cost-effective and green approach for the fabrication of a flexible cellulose paper electrode using an electroless-electrodeposition method. The one-step electroless deposition route is followed to induce conductivity into a non-conductive cellulose paper substrate without using any expensive activators or sensitisers. The Fe3O4 is then electro-deposited as an active catalyst over the conductive paper substrate for use in electrochemical activities. The as-fabricated paper electrode shows promising activity and stability during the dinitrogen reduction reaction (NRR) as well as oxygen bifunctional electrocatalysis. A faradaic efficiency of 4.32% with a yield rate of 245 μg h−1 mgcat−1 at −0.1 V is achieved for NRR whereas a very small overpotential of 180 mV is required to reach 10 mA cm−2 during OER, and the ORR reaction starts at the onset potential of 0.86 V. The practical applicability of the paper electrode is validated by assembling a Zn–O2 battery showing a peak power density of 81 mW cm−2 and a stability up to 35 h during charge–discharge cycles, which can power the NRR to produce NH3 under full cell conditions. en_US
dc.language.iso en_US en_US
dc.title Self-standing Fe3O4 decorated paper electrode as a binder-free trifunctional electrode for electrochemical ammonia synthesis and Zn–O2 batteries en_US
dc.type Article en_US


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search DSpace


Advanced Search

Browse

My Account