Abstract:
Abstract:
In this study, the role of inelastic deformation of bone on its strain rate-dependent mechanical behaviour was investigated. For this, human cortical bone samples were cyclically loaded to accumulate inelastic strain and subsequently, mechanical response was investigated under compressive loading at different strain rates. The strain rate behaviour of fatigued samples was compared with non-loaded control samples. Furthermore, cyclic loading-induced microdamage was quantified through histological analysis. The compression test results show that the strength of fatigue-loaded bone reduced significantly at low strain rates but not at high strain rates. The difference in microcrack density was not significant between fatigued and control groups. The results indicate that the mechanism of load transfer varies between low strain rate and high strain rate regimes. The inelastic deformation mechanisms are more prominent at low strain rates but not at high strain rates. This study shed light on the role of inelastic deformation on the rate-dependent behaviour of cortical bone.